University POLITEHNICA of Bucharest

Faculty of Industrial Engineering & Robotics

Study programme: Industrial Engineering

Form of study: Bachelor

COURSE SPECIFICATION

Course title	Integrated Production Systems	Semester	7
Course code	UPB.06.S.07.O.005	ECTS	7

Course structure	Lecture	Seminar	Laboratory	Project	Total hours
No. of hours/ week	3		2	2	7
No. of hours/ semester	42		28	28	98

Lecturer	Lecture	Seminar	Laboratory	Project
Name,	Cicerone Laurentiu		Cicerone Laurentiu	Florina CHISCOP,
academic	POPA,		POPA,	Lecturer.Dr.Eng.
degree	Assoc.Prof.Dr.Eng.		Assoc.Prof.Dr.Eng.	
Contact	laurentiu.popa@upb.ro		laurentiu.popa@upb.ro	florina.chiscop@upb.ro
(E-mail,	FIIR, CK 110 room		FIIR, CK 110 room	FIIR, CK 110 room
location)				

Course description:

- Concepts and terminology of integrated production systems.
- Definition and characterization of manufacturing architecture structural elements.
- Concentrated and diffused production systems.
- Discrete material flow management. Continuous material flow management. Hybrid material flow management.
- Workpieces, tools, parts and products material flow in production systems.
- Structural elements parameterization (work points, transfer and transport systems, storage systems).
- Material flow digital twinning in the Industry 4.0 paradigm
- Flexibility and automation in production systems.
- Common and specific algorithms for diffused and concentrated systems.
- Integrated production systems simulation and diagnosis.
- Material flow optimization method for integrated production systems.
- Economic impact analysis methods. Quantifying the productivity for a modelled manufacturing architecture.

Laboratory description:

- Witness Horizon general presentation.
- Case studies made in Witness Horizon.

- Using Witness Horizon for structural elements modelling and production systems modelling.
- Defining the links between structural elements and establishing the material flow trajectories using Witness Horizon.
- Structural elements parameterization using Witness Horizon.
- Material flow simulation and bottlenecks identification using Witness Horizon.
- Report analysis in order to choose a flow optimization method (technological or functional) using Witness Horizon.
- Material flow simulation in order to validate the identified optimization solutions using Witness Horizon.
- Economic impact analysis.

Project decsription:

- Generic case study System modelling, simulation and optimization.
- Concentrated system modelling, simulation and optimization.
- Diffused system modelling, simulation and optimization.
- Modelling, simulation and optimization of integrated production systems

Assessment methods	Percentage of the final grade	Minimal requirements for award of credits
Written exam	40	• Laboratory and project
Written paper	20	attendance is mandatory
Laboratory	15	• At least 7.5 points for
Project	25	 the Laboratory At least 12.5 points for the Project At least 50 points out of
		a total of 100 points

References

- 1. Cachon, Gerard, Christian Terwiesch, Matching Supply with Demand: An Introduction to Operations Management, 3rd edition, ISBN 978-0073525204, Irwin - McGraw Hill, 2012
- 2. Cotet, C.E.; Popa, C.L.; Enciu, G., Popescu, A. & Dobrescu T., Using CAD and flow simulation for educational platform design and optimization, International Journal of Simulation Modelling IJSIMM, vol. 15, no. 1, March 2016, p.5-15, ISSN 1726-4529.
- Coteţ C.E., Popa C.L., Anghel F. (2009) Manufacturing architecture design using discrete material flow management – International Journal of Simulation Modelling IJSIMM, no. 4, vol. 8, December 2009, p.206-214, ISSN 1726-4529.
- 4. C.E. Cotet, C.L. Popa, G. Enciu, A. Popescu and C.E. Stoica Material flow digital twinning in the Industry 4.0 paradigm, Proceedings of the 14th International Conference on Management and Innovative Technologies MIT 2016, pg. 43-49, ISBN 978-961-6980-17-3, 2016.
- 5. C.E. Cotet, C. Doicin, G. Jiga, C.L. Popa, Groundhog Day versus the Butterfly Effect in Industrial Engineering, Proceedings of the 13th International Conference on

Management and Innovative Technologies (MIT 2014), ISBN 978-961-6536-76-9, pag. 1-5, Fiesa, Slovenia, 2014.

6. Manual Witness Horizon

Prerequisites (recommended)	Co-requisites (courses to be taken in parallel as a condition for enrolment)
Computer Aided Design 1&2; System and Project Management; Production and Operation Management.	

Additional relevant information:

Date: 24.05.2022